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polynomials

D Galetti1, S S Mizrahi2 and M Ruzzi1
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Abstract
A Wigner function associated with the Rogers-Szegö polynomials is proposed
and its properties are discussed. It is shown that from such a Wigner function
it is possible to obtain well-behaved probability distribution functions for both
angle and action variables, defined on the compact support −π � θ < π , and
for m � 0, respectively. The width of the angle probability density is governed
by the free parameter q characterizing the polynomials.

PACS numbers: 02.20.Uw, 02.30.Gp, 03.65.−w

Though the properties of the Wigner function associated with the harmonic oscillator, and
therefore with the Hermite polynomials, are quite well known, the same cannot be said
concerning the Rogers-Szegö polynomials (RSP) [1–6]

Hn(y) ≡ Hn(y; q) =
n∑

r=0

[
n

r

]
yr, (1)

with the q-binomial[
n

r

]
= (1 − q)(1 − q2) · · · (1 − qn)

(1 − q) · · · (1 − qr)(1 − q) · · · (1 − qn−r )
= (q)n

(q)r (q)n−r

(2)

for r and n integers, 0 � r � n and (0)n = 1. So the aim of the present letter is to propose a
Wigner function related to the RSP and discuss the associated probability distribution functions
extracted from it.

We recall that the Weyl–Wigner transformation associated with the well-known
translational degree of freedom for Cartesian variables and moments of a particle has long
been established and widely discussed in the literature [7–12]. On the other hand, in that
context, the rotational degree of freedom has been scarcely touched upon. The treatments
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of this case were directly inferred from the previous one by means of symmetry arguments
[13, 14], by the continuous limit of finite-dimensional Weyl–Wigner mappings [15, 16], or by
the implementation of the appropriate kinematics relations [17]. It is clear in all these cases
that one is dealing with functions of angular variables that have period 2π and the measure of
this function space is simply unity.

It was shown that the RSP are associated with a realization of the q-deformed harmonic
oscillator algebra [18–21], and are characterized by a discrete positive variable n and a
continuous angle variable θ (an action–angle pair in contrast to the Hermite action–position)
depending on a deformation parameter q. We are then able to write a Weyl–Wigner
transformation from which we extract angle and action probability distribution functions.
As such, we propose that the RSP can be used as good functions to describe phase states.

The RSP can be made periodic, with period 2π , and orthonormalized on the circle
provided we first perform a proper choice for the variable y, y = −q−1/2 eiϕ , such that

Hn(y; q) = Hn(−q−1/2 eiϕ; q) (3)

and make use of the Jacobi ϑ3-function [22]

ϑ3(ϕ; q) =
∞∑

m=−∞
qm2/2 eimϕ =

∞∑
m=−∞

e−µm2+imϕ, (4)

(µ = −(ln q)/2) as a measure function, in the same way as the Gaussian function is a measure
function for the standard Hermite polynomials associated with the one-dimensional harmonic
oscillator (note that 0 � q � 1 implies 0 � µ � ∞ ).

Due to its properties, the Jacobi ϑ3-function has already been proposed as a valuable
function to describe particular limiting situations in quantum optics [23], and also as a
coherent state for a particle on a circle where the angular variable now plays an essential
role [24, 25]. In this case, the algebra is given in terms of the angular momentum and a unitary
operator so that the commutation relation is [J,U ] = U,U is a unitary operator associated
with angular momentum shifts. Such a commutation relation was discussed long ago in the
literature [26, 27], and was also obtained as the limiting case in finite-dimensional phase space
representation of quantum mechanics [15]. It is worth noting that the Jacobi ϑ3-function with
integer argument was also proposed as a coherent state for the case of any finite-dimensional
degrees of freedom [28], since in these cases the eigenvalue problem associated with the
discrete Fourier matrix in the discrete basis [29] gives a solution which is directly expressed
in terms of that Jacobi function. In this sense we see that the Jacobi ϑ3-function plays a wider
role in connection with coherent states and, in particular, with the rotational or action–angle
degrees of freedom.

We also give what is sometimes known as the Rogers-Szegö function (RSF)

Rn(ϕ; q) = qn/2

[(q, q)n]1/2
Hn(−q−1/2 eiϕ; q). (5)

where [5, 30]

(x; q)n ≡ (1 − x)(1 − xq)(1 − xq2) · · · (1 − xqn−1) =
n∑

j=0

(−1)j
[
n

j

]
q

1
2 j (j−1)xj . (6)

The orthonormalization integral is written as

Imn(q) =
∫ π

−π

Hm(−q−1/2 eiϕ; q)Hn(−q−1/2 e−iϕ; q)ϑ3(ϕ; q)
dϕ

2π
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and using the definition (1) we get

Imn(q) =
m∑

r=0

n∑
s=0

(−1)r+s

[
m

r

][
n

s

]
qr(r−1)/2qs(s−1)/2q−rs = (q, q)n

qn
δm,n, (7)

a result discussed by Carlitz [4] (see the appendix for a proof).
In the same form as for the harmonic oscillator on the line, where the probability

distribution for x is �(n)(x; b) dx = |Hn(x; b)|2 exp(−x2/b2) dx, with Hn(x; b) the standard
Hermite polynomial and b the harmonic oscillator width, acting as a controlling parameter, we
may guess that the expression constructed with the ϑ3-function and the RSF �(n)(ϕ; q) dϕ =
|Rn(ϕ; q)|2ϑ3(ϕ; q) dϕ is, as a matter of fact, a good candidate for the angle probability
distribution, with q (or µ) a parameter controlling the distribution width.

Noting that ϑ3(ϕ; q) is an even function of ϕ, and also guided by previous results [13–15],
we propose a Weyl–Wigner mapping of an operator Ô by taking the Fourier transform, namely,

O(m, θ) =
∫ π

−π

eimθ̃

〈
θ − θ̃

2

∣∣∣∣ Ô ∣∣∣∣θ +
θ̃

2

〉
ϑ3(θ − θ̃/2; q)

d̃θ

2π
. (8)

This expression defines a quantum phase space representative of operator Ô. It must be noted
that the choice for the ϑ3(ϕ; q) argument could be θ + θ̃

2 as well; the change would result in a
change of sign in the θ̃ variable that leads, however, to the same final expression.

In this form, choosing Ôn = |n〉〈n|, the projector for the n-quanta harmonic oscillator
(useful for writing a density operator ρ̂ = ∑∞

n=0 pn|n〉〈n|, pn being probabilities), we can get
the Wigner function associated with the RSP. Setting 〈θ − θ̃/2|n〉 = Rn(θ − θ̃/2; q) (and
equivalently for 〈n|θ + θ̃

2 〉) and using equation (4), equation (8) becomes

On(m, θ) =
∞∑

t=−∞
e−µt2+itθ

∫ π

−π

eimθ̃ e−it θ̃/2Rn(θ − θ̃/2; q)R∗
n(θ + θ̃/2; q)

d̃θ

2π
.

Now, using equations (5) and (1) we get the Wigner function

On(m, θ) = qn

(q, q)n

∞∑
t=−∞

e−µt2+itθ
n∑

r,s=0

(−1)r+s

[
n

r

][
n

s

]
eµ(r+s) eiθ(r−s)

sin
(
m − t+r+s

2

)
π(

m − t+r+s
2

)
π

(9)

from which we can extract the probability distributions for both action and angle.
By first integrating equation (9) over the angle variable θ , we obtain a probability

distribution, namely.

	(n)(m) =
∫ π

−π

ρ(n)(m, θ)
dθ

2π
= qn

(q, q)n

n∑
r,s=0

(−1)r+s

[
n

r

][
n

s

]
eµ(r+s) e−µ(s−r)2 sin(m − s)π

(m − s)π
,

(10)

then making use of expressions (A.1), (A.2) and (A.3) and carrying out the summations in
(10), we get

	(n)(m) = qn

(q, q)n

[
(−1)nq

n
2 (n−1)

n−1∏
r=0

(1 − qr−n)

]
sin(m − n)π

(m − n)π

and as the factor in brackets is (q, q)n/q
n (see the appendix), we have

	(n)(m) = sin(m − n)π

(m − n)π
= δm,n. (11)

Therefore, the distribution function 	(n)(m) only depends on the discrete values associated
with the polynomial indices of the RSP, and m � 0 assume the role of an action variable.
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On the other hand, by performing the summation over m in equation (9) we get the angle
probability distribution, namely,

�(n)(θ, µ) =
∞∑

m=−∞
O(n)(m, θ) = qn

(q, q)n

∞∑
t=−∞

e−µt2+itθ
n∑

r,s=0

(−1)r+s

×
[
n

r

][
n

s

]
eµ(r+s) eiθ(r−s)

∞∑
m=−∞

sin
(
m − t+r+s

2

)
π(

m − t+r+s
2

)
π

,

and since the sum over m equals 1 for (t + r + s)/2 integer or half-integer, we get

�(n)(θ, µ) =
∞∑

t=−∞
e−µt2+itθ

{
qn

(q, q)n

n∑
r,s=0

(−1)r+s

[
n

r

][
n

s

]
eµ(r+s) eiθ(r−s)

}
.

The curly bracket can be immediately identified as

qn

(q, q)n

n∑
r,s=0

(−1)r+s

[
n

r

][
n

s

]
eµ(r+s) eiθ(r−s) = |Rn(θ;µ)|2,

so that, as anticipated, the angle probability distribution reads

�(n)(θ, µ) =
∞∑

t=−∞
e−µt2+itθ |Rn(θ;µ)|2 = ϑ3(ϕ;µ)|Rn(θ;µ)|2, (12)

which is a well-behaved function in the compact support −π � θ < π .
We can verify that the Wigner function is normalized to unity by just integrating

equation (12) over its range of definition and recalling the orthogonalization procedure, or by
summing expression (11) over m in the range 0 � m < ∞.

As a first case of study it is now direct to particularize the Wigner function to the lowest
Rogers-Szegö function, namely, n = 0, the vacuum state projector. In this case

O0(m, θ) =
∞∑

t=−∞
e−µt2+itθ sin

(
m − t

2

)
π(

m − t
2

)
π

, (13)

that gives 	(0)(m) = δm,0 for the action probability distribution and the angle probability
distribution simplifies to

�(0)(θ, µ) = ϑ3(θ;µ), (14)

since from equation (5) R0(θ;µ) = 1.
In the same form, the normalized angle probability distribution for the second polynomial

(projector Ô1) is

�(1)(θ, µ) = e−2µ

1 − e−2µ
(1 − 2 eµ cos θ + e2µ)ϑ3(θ;µ).

Finally, it is worth noting that the angle probability distribution is µ-dependent as expected,
so that the width of �(n)(θ, µ) is governed by the free parameter q (or µ), which is the parameter
of the deformed Heisenberg algebra [18, 31].
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Appendix. Carlitz orthogonality proof of the Rogers-Szegö polynomials

Let us first consider

Imn =
m∑

r=0

n∑
s=0

(−1)r+s

[
m

r

][
n

s

]
q

r
2 (r−1)q

s
2 (s−1)q−rs , (A.1)

and using (6) in (A.1) we obtain

Imn =
m∑

r=0

(−1)r
[
m

r

]
q

r
2 (r−1)

n−1∏
s=0

(1 − qs−r ). (A.2)

Now, without any loss of generality, we can assume that m � n (the inverse could also be
considered). There are two situations to be discussed. First, for m < n, it is evident that the
product on the rhs of (A.2) will vanish for all r (the rhs is constituted of a sum of products.
Each summand has a product of terms where one of them will give (1 − qr−r ) = 0, since,
as m < n, s will necessarily assume the value r). Therefore, the sum only has vanishing
summands, since there will always be a zero factor in the products. Second, for m = n there
will be only one term to be considered, namely r = m. Thus

Imn = (−1)nq
n
2 (n−1)

n−1∏
s=0

(1 − qs−n)δm,n = q−n(q; q)nδn,m. (A.3)
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[24] González J A and del Olmo M A 1998 J. Phys. A: Math. Gen. 31 8841
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